Vortex pinning by cylindrical defects in type-II superconductors: Numerical solutions to the Ginzburg-Landau equations.

نویسندگان

  • Maurer
  • Yeh
  • Tombrello
چکیده

We numerically integrate the one-dimensional, cylindrically symmetric Ginzburg-Landau equations to calculate the spatial variation of the order parameter and supercurrents for a vortex trapped by a cylindrical defect. We use the resulting field distributions to estimate the pinning energy, and make use of the vortex/twodimensional boson analogy to calculate the depinning temperature. The microscopic behavior of the fields depends on the size, and the conductivity of the cylindrical defect appears to be important for the pinning. @S0163-1829~96!09045-5#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical calculation of the vortex–columnar-defect interaction and critical currents in extreme type-II superconductors—a two-dimensional model based on the Ginzburg–Landau approximation

We extend our previous one-dimensional Ginzburg–Landau calculations of the pinning energy of vortices to two dimensions, in order to achieve an understanding of the pinning forces exerted on vortices by defects. By minimizing the free energy using a relaxation scheme, we obtain the spatial variation of the order parameter and supercurrents for a vortex in the vicinity of a cylindrical defect in...

متن کامل

Stochastic dynamics of Ginzburg-Landau vortices in superconductors

The phenomenological Ginzburg-Landau model for lowtemperature superconductivity has received much attention. However, it is not applicable to physical contexts that do not take into account factors such as material defects or thermal fluctuations. Thus, existing studies of the stability, dynamics, interactions, and other properties of the vortex state do not necessarily carry over to situations...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Vortex lattice pinning in high-temperature superconductors

Vortex matter in high temperature superconductors has many peculiar properties such as melting of the vortex lattice, creation of new vortex-liquid phases etc. These effects are not seen in conventional superconductors. This is mainly due to the fact that HTc compounds are strongly type two superconductors with Ginzburg-Landau ratio up to ~110 that makes thermal and quantum fluctuations more pr...

متن کامل

Pinning of Magnetic Vortices by an External Potential

The existence and uniqueness of vortex solutions is proved for Ginzburg– Landau equations with external potentials in R2. These equations describe the equilibrium states of superconductors and the stationary states of the U(1)-Higgs model of particle physics. In the former case, the external potentials are due to impurities and defects. Without the external potentials, the equations are transla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. B, Condensed matter

دوره 54 21  شماره 

صفحات  -

تاریخ انتشار 1996